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Recursive Flexible Multibody System Dynamics using Spatial
Operators

A. Jain� and G. Rodriguezy

Abstract

This paper uses spatial operators to develop new spatially recursive dynamics algorithms

for 
exible multibody systems. The operator description of the dynamics is identical to that for

rigid multibody systems. Assumed{mode models are used for the deformation of each individual

body. The algorithms are based on two spatial operator factorizations of the system mass matrix.

The �rst (Newton{Euler) factorization of the mass matrix leads to recursive algorithms for the

inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the system.

The second (Innovations) factorization of the mass matrix, leads to an operator expression for the

mass matrix inverse and to a recursive articulated{body forward dynamics algorithm. The primary

focus is on serial chains, but extensions to general topologies are also described. A comparison of

computational costs shows that the articulated{body forward dynamics algorithm is much more

e�cient than the composite{body algorithm for most 
exible multibody systems.

1 Nomenclature

We use coordinate{free spatial notation ( Refs. 3, 4) in this paper. A spatial velocity of a frame

is a 6-dimensional quantity whose upper 3 elements are the angular velocity and whose lower 3

elements are the linear velocity. A spatial force is a 6-dimensional quantity whose upper 3 elements

are a moment vector and whose lower 3 elements are a force vector.

A variety of indices are used to identify di�erent spatial quantities. Some examples are:

Vs(jk) is the spatial velocity of the j
th node on the kth body; Vs(k) = col

n
Vs(jk)

o
is the composite

vector of spatial velocities of all the nodes on the kth body; Vs = col
n
Vs(k)

o
is the vector of spatial

velocities of all the nodes for all the bodies in the serial chain. The index k will be used to refer to

both the kth body as well as the kth body reference frame Fk, with the usage being apparent from

the context. Some key quantities are de�ned below (see also Figure 1).
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General Quantities:

~x = [x]� 2 R
3�3 - the skew{symmetric cross{product matrix associated with the 3{

dimensional vector x

_x =
dx

dt
- the time derivative of x with respect to an inertial frame

�x - the time derivative of x with respect to the body{�xed (rotating) frame

diag
n
x(k)

o
- a block diagonal matrix whose kth diagonal element is x(k)

col
n
x(k)

o
- a column vector whose kth element is x(k)

l(x; y) 2 R3 - the vector from point/frame x to point/framee y

�(x; y) =

 
I ~l(x; y)

0 I

!
2 R6�6 - the spatial transformation operator which transforms spatial

velocities and forces between points/frames x and y

Individual Body Nodal Data:

ns(k) - number of nodes on the kth body

Fk - body reference frame with respect to which the deformation �eld for the kth body

is measured. The motion of this frame characterizes the motion of the kth body as a

rigid body.

jk - jth node on the kth body

l0(k; jk) 2 R
3 - vector from Fk to the location (before deformation) of the jth node reference

frame on the kth body

�l(jk) 2 R3 - translational deformation of the jth node on the kth body

l(k; jk) = l0(k; jk) + �l(jk) 2 R
3 - vector from Fk to the location (after deformation) of the jth

node reference frame on the kth body

�!(jk) 2 R
3 - deformation angular velocity of the jth node on the kth body with respect to

the body frame Fk

�v(jk) 2 R3 - deformation linear velocity of the jth node on the kth body with respect to the

body frame Fk

u(jk) 2 R
6 - the spatial displacement of node jk. The translational component of u(jk) is

�l(jk), while its time derivative with respect to the body frame Fk is �u(jk) =

 
�!(jk)

�v(jk)

!

J (jk) 2 R
3�3 - inertia tensor about the nodal reference frame for the jth node on the kth

body
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p(jk) 2 R
3 - vector from the nodal reference frame to the node center of mass for the jth

node on the kth body

m(jk) - mass of the jth node on the kth body

Ms(jk) =

 
J (jk) m(jk)~p(jk)

�m(jk)~p(jk) m(jk)I

!
2 R

6�6 - spatial inertia about the nodal reference

frame for the jth node on the kth body

Ms(k) diag
n
Ms(jk)

o
2 R6ns (k)�6ns(k) - structural mass matrix for the kth body

Ks(k) 2 R6ns (k)�6ns(k) - structural sti�ness matrix for the kth body

Individual Body Modal Data:

nm(k) - number of assumed modes for the kth body

N (k) = nm(k) + 6 - number of deformation plus rigid{body degrees of freedom for the kth

body

�(k) 2 Rnm (k) - vector of modal deformation variables for the kth body

�j
r(k) 2 R

6 - modal spatial displacement vector for the rth mode at the jthk nodal reference

frame

�j(k) =
h
�
j
1(k); � � � ;�

j

nm(k)
(k)
i
2 R6�nm (k) - modal spatial in
uence vector for the jthk node.

The spatial deformation of node jk is given by u(jk) = �j(k)�(k).

�(k) = col
n
�j(k)

o
2 R6ns (k)�nm(k) - the modal matrix for the kth body. The rth column of

�(k) is denoted �r(k) 2 R
6ns (k) and is the mode shape function for the rth assumed

mode for the kth body. The deformation �eld for the kth body is given by u(k) =

�(k)�(k), while �u(k) = �(k) _�(k).

Mm(k) 2 RN (k)�N (k) - modal mass matrix for the kth body.

Km(k) 2 RN (k)�N (k) - modal sti�ness matrix for the kth body.

Multibody Data:

N - number of bodies in the serial 
exible multibody system

N =
PN

k=1N (k) - overall degrees of freedom in the serial chain obtained by disregarding

the hinge constraints

nr(k) - number of degrees of freedom for the kth hinge

N (k) = nm(k) + nr(k) - number of deformation plus hinge degrees of freedom for the kth

body

N =
PN

k=1N (k) - overall deformation plus hinge degrees of freedom for the serial chain

3



dk - node on the kth body to which the kth hinge is attached

tk - node on the kth body to which the (k � 1)th hinge is attached

Ok - reference frame for the kth hinge on the kth body. This frame is �xed to node dk.

O
+
k - reference frame for the kth hinge on the (k + 1)th body. This frame is �xed to node

tk+1.

�(k) 2 Rnr (k) - vector of con�guration variables for the kth hinge

�(k) 2 Rnr (k) - vector of generalized velocities for the kth hinge

�V (k) =

 
�!(k)

�v(k)

!
2 R

6 - relative spatial velocity for the kth hinge de�ned as the spatial

velocity of frame Ok with respect to frame O+
k

H�(k) 2 R6�nr (k) - joint map matrix for the kth hinge. We have that �V (k) = H�(k)�(k).

#(k) =

 
�(k)

�(k)

!
2 R

N (k) - vector of (deformation plus hinge) generalized con�guration

variables for the kth body

�(k) =

 
_�(k)

�(k)

!
2 RN (k) - vector of (deformation plus hinge) generalized velocities for the

kth body

V (k) = V (Fk) =

 
!(k)

v(k)

!
2 R6 - spatial velocity of the kth body reference frame Fk, with

!(k) and v(k) denoting the angular and linear velocities respectively of frame Fk

V (Ok) 2 R6 - spatial velocity of frame Ok

V (O+
k ) 2 R6 - spatial velocity of frame O+

k

Vs(jk) 2 R6 - spatial velocity of the jth node on the kth body.

�s(jk) 2 R6 - spatial acceleration of the jth node on the kth body.

Vm(k) =

 
_�(k)

V (k)

!
2 RN (k) - modal spatial velocity of the kth body

�m(k) = _Vm(k) 2 R
N (k) - modal spatial acceleration of the kth body

am(k) 2 RN (k) - modal Coriolis and centrifugal accelerations for the kth body

bm(k) 2 RN (k) - modal gyroscopic forces for the kth body

fm(k) 2 RN (k) - modal spatial force of interaction between the kth and

(k + 1)th bodies
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fs(jk) 2 R6 - spatial force at node jk

f(k) 2 R6 - e�ective spatial force at frame Fk

T (k) 2 RN (k) - generalized force for the kth body

HF (k) = H(k)�(Ok ; k) 2 R
nr (k)�6 - joint map matrix referred to frame Fk for the k

th hinge

H(k) =

 
I �[�d

F
(k)]�

0 HF (k)

!
2 RN (k)�N (k) - (deformation plus hinge) modal joint map matrix

for the kth body

A(k) =

 
[�t(k)]�

�(k; tk)

!
2 R

N (k)�6 - relates spatial forces and velocities between node tk and

frame Fk

B(k + 1; k) = [0; �(tk+1; k)] 2 R
6�N (k) - relates spatial forces and velocities between node tk+1

and frame Fk

�(k + 1; k) = A(k+1)B(k+1; k) =

 
0 [�t(k + 1)]��(tk+1; k)

0 �(k + 1; k)

!
2 RN (k+1)�N (k) - the interbody

transformation operator which relates modal spatial forces and velocities between the

kth and (k + 1)th bodies

C(k; k � 1) =

0
BBBBBBBBB@

0
...

�(tk; k � 1)
...

0

1
CCCCCCCCCA
2 R6ns (k)�6

B(k) = [�(k; 1k); �(k; 2k); � � � ; �(k; ns(k))] 2 R
6�6ns (k) - relates the spatial velocity of frame

Fk to the spatial velocities of all the nodes on the kth body when the body is regarded

as being rigid

M 2 RN�N - the multibody system mass matrix

C 2 RN - the vector of Coriolis, centrifugal and elastic forces for the multibody system

2 Introduction

This paper uses spatial operators ( Refs. 3, 4) to formulate the dynamics and develop e�cient

recursive algorithms for 
exible multibody systems. Flexible spacecraft, limber space manipulators,

and vehicles are important examples of 
exible multibody systems. Key features of these systems

are the large number of degrees of freedom and the complexity of their dynamics models.

The main contributions of the paper are: (1) providing a high-level architectural understand-

ing of the structure of the mass matrix and its inverse; (2) showing that the high-level expressions
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can be easily implemented within the very well understood Kalman �ltering and smoothing archi-

tecture; (3) developing very e�cient inverse and forward dynamics recursive algorithms; and (4)

analyzing the computational cost of the new algorithms. These contributions add to the rapidly

developing body of research in the recursive dynamics of 
exible multibody systems (see Refs.

5, 6, 7).

It is assumed that the bodies undergo small deformations so that a linear model for elasticity

can be used. However, large articulation at the hinges is allowed. No special assumptions are

made regarding the geometry of the component bodies. To maximize applicability, the algorithms

developed here use �nite{element and/or assumed{mode models for body 
exibility. For notational

simplicity, and without any loss in generality, the main focus of this paper is on 
exible multibody

serial chains. Extensions to tree and closed-chain topologies are discussed.

In Section 3 we derive the equations of motion and recursive relationships for the modal

velocities, modal accelerations, and modal forces This section also contains a derivation of the

Newton-Euler Operator Factorization of the system mass matrix. A recursive Newton-Euler inverse

dynamics algorithm to compute the vector of generalized forces corresponding to a given state and

vector of generalized accelerations is described in Section 4

In Section 5, the Newton-Euler factorization of the mass matrix is used to develop a partly

recursive composite{body forward dynamics algorithm for computing the generalized accelerations

of the system The recursive part is for computing the multibody system mass matrix. This forward

dynamics algorithm is in the vein of well-established approaches ( Refs. 8, 9) which require the

explicit computation and inversion of the system mass matrix. However, the new algorithm is

more e�cient because the mass matrix is computed recursively and because the detailed recursive

computations follow the high-level architecture (i.e. roadmap) provided by the Newton{Euler

factorization.

In Section 6 we derive new operator factorization and inversion results for the mass matrix

that lead to the recursive articulated{body forward dynamics algorithm A new mass matrix operator

factorization, referred to as the Innovations factorization, is developed. The individual factors in

the innovations factorization are square and invertible operators. This is in contrast to the Newton-

Euler factorization in which the factors are not square and therefore not invertible. The Innovations

factorization leads to an operator expression for the inverse of the mass matrix. Based on this

expression, in Section 7 we develop the recursive articulated body forward dynamics algorithm for

the multibody system This algorithm is an alternative to the composite{body forward dynamics

algorithm and requires neither the explicit formation of the system mass matrix nor its inversion.

The structure of this recursive algorithm closely resembles those found in the domain of Kalman

�ltering and smoothing ( Ref. 10).

In Section 8 we compare the computational costs for the two forward dynamics algorithms

It is shown that the articulated body forward dynamics algorithm is much more e�cient than the

composite body forward dynamics algorithm for typical 
exible multibody systems. In Section 9

we discuss the extensions of the formulation and algorithms in this paper to tree and closed-chain
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topology multibody systems

3 Equations of Motion for Flexible Serial Chains

In this section, we develop the equations of motion for a serial 
exible multibody system with

N 
exible bodies. Each 
exible body is assumed to have a lumped mass model consisting of a

collection of nodal rigid bodies. Such models are typically developed using standard �nite element

structural analysis software. The number of nodes on the kth body is denoted ns(k). The j
th node

on the kth body is referred to as the jthk node. Each body has associated with it a body reference

frame, denoted Fk for the k
th body. The deformations of the nodes on the body are described with

respect to this body reference frame, while the rigid body motion of the kth body is characterized

by the motion of frame Fk.

The 6-dimensional spatial deformation (slope plus translational) of node jk (with respect to

frame Fk) is denoted u(jk) 2 R
6 . The overall deformation �eld for the kth body is de�ned as the

vector u(k) = col
n
u(jk)

o
2 R

6ns (k). The vector from frame Fk to the reference frame on node jk

is denoted l(k; jk) 2 R
3 .

WithMs(jk) 2 R
6�6 denoting the spatial inertia of the jth node, the structural mass matrix

for the kth bodyMs(k) is the block diagonal matrix diag
n
Ms(jk)

o
2 R6ns (k)�6ns(k). The structural

sti�ness matrix is denoted Ks(k) 2 R
6ns (k)�6ns(k). Both Ms(k) and Ks(k) are typically generated

using �nite element analysis.

As shown in Figure 1, the bodies in the serial chain are numbered in increasing order from

tip to base. We use the terminology inboard (outboard) to denote the direction along the serial

chain towards (away from) the base body. The kth body is attached on the inboard side to the

(k + 1)th body via the kth hinge, and on the outboard side to the (k � 1)th body via the (k � 1)th

hinge. On the kth body, the node to which the outboard hinge (the (k � 1)th hinge) is attached

is referred to as node tk, while the node to which the inboard hinge (the kth hinge) is attached

is denoted node dk. Thus the k
th hinge couples together nodes dk and tk+1. Attached to each of

these pair of adjoining nodes are the kth hinge reference frames denoted Ok and O+
k , respectively.

The number of degrees of freedom for the kth hinge is denoted nr(k). The vector of con�guration

variables for the kth hinge is denoted �(k) 2 Rnr (k), while its vector of generalized speeds is denoted

�(k) 2 R
nr (k). In general, when there are nonholonomic hinge constraints, the dimensionality of

�(k) may be less than that of �(k). For notational convenience, and without any loss in generality,

it is assumed here that the dimensions of the vectors �(k) and �(k) are equal. In most situations,

�(k) is simply _�. However there are many cases where the use of quasi-coordinates simpli�es the

dynamical equations of motion and an alternative choice for �(k) may be preferable. The relative

spatial velocity �V (k) across the hinge is given by H�(k)�(k), where H�(k) denotes the joint map

matrix for the kth hinge.

Assumed modes are typically used to represent the deformation of 
exible bodies, and there

is a large body of literature dealing with their proper selection. There is however a close relationship
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between the choice of a body reference frame and the type of assumed modes. The complete motion

of the 
exible body is contained in the knowledge of the motion of the body reference frame and

the deformation of the body as seen from this body frame. In the multibody context, it is often

convenient to choose the location of the kth body reference frame Fk as a material point on the

body and �xed to node dk at the inboard hinge. For this choice, the assumed modes are cantilever

modes and node dk exhibits zero deformation (u(dk) = 0). Free{free modes are also used for

representing body deformation and are often preferred for control analysis and design. For these

modes, the reference frame Fk is not �xed to any node, but is rather assumed to be �xed to the

undeformed body, and as a result all nodes exhibit nonzero deformation. The dynamics modeling

and algorithms developed here handle both types of modes, with some additional computational

simpli�cations arising from (1) when cantilever modes are used. For a related discussion regarding

the choice of reference frame and modal representations for a 
exible body see Ref. 11.

We assume here that a set of nm(k) assumed modes has been chosen for the kth body. Let

�j
r(k) 2 R

6 denote the modal spatial displacement vector at the jthk node for the rth mode. The

modal spatial displacement in
uence vector �j(k) 2 R6�nm (k) for the jthk node and the modal matrix

�(k) 2 R6ns (k)�nm(k) for the kth body are de�ned as follows:

�j(k) =
h
�
j
1(k); � � � ;�

j

nm(k)
(k)
i

and �(k) = col
n
�j(k)

o

The rth column of �(k) is denoted �r(k) and de�nes the mode shape for the rth assumed mode for

the kth body. Note that for cantilever modes we have

�d
r(k) = 0 for r = 1 � � � nm(k) (1)

With �(k) 2 Rnm (k) denoting the vector of modal deformation variables for the kth body, the spatial

deformation of node jk and the spatial deformation �eld u(k) for the kth body are given by

u(jk) = �j(k)�(k) and u(k) = �(k)�(k) (2)

The vector of generalized con�guration variables #(k) and generalized speeds �(k) for the

kth body are de�ned as

#(k)
4

=

 
�(k)

�(k)

!
2 R

N (k) and �(k)
4

=

 
_�(k)

�(k)

!
2 R

N (k) (3)

where N (k)
4

= nm(k) + nr(k). The overall vectors of generalized con�guration variables # and

generalized speeds � for the serial multibody system are given by

#
4

= col
n
#(k)

o
2 R

N and �
4

= col
n
�(k)

o
2 R

N (4)

where N
4

=
PN

k=1N (k) denotes the overall number of degrees of freedom for the multibody system.

The state of the multibody system is de�ned by the pair of vectors f#; �g. For a given system

state f#; �g, the equations of motion de�ne the relationship between the vector of generalized

accelerations _� and the vector of generalized forces T 2 RN for the system. The inverse dynamics
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Recursive Propagation of Velocities

problem consists of computing the vector of generalized forces T for a prescribed set of generalized

accelerations _�. The forward dynamics problem is the converse one and consists of computing the

set of generalized accelerations _� resulting from a set of generalized forces T . The equations of

motion for the system are developed in the remainder of this section.

3.1 Recursive Propagation of Velocities

Let V (k) 2 R6 denote the spatial velocity of the kth body reference frame Fk. The spatial velocity

Vs(tk+1) 2 R
6 of node tk+1 (on the inboard of the kth hinge) is related to the spatial velocity

V (k + 1) of the (k + 1)th body reference frame Fk+1, and the modal deformation variable rates

_�(k + 1) as follows:

Vs(tk+1) = ��(k + 1; tk+1)V (k + 1) +�u(tk+1)

= ��(k + 1; tk+1)V (k + 1) + �t(k + 1) _�(k + 1) (5)

The spatial transformation operator �(x; y) 2 R6�6 above is de�ned to be

�(x; y) =

 
I ~l(x; y)

0 I

!
(6)

where l(x; y) 2 R3 denotes the vector between the points x and y. Note that the following important

(group) property holds:

�(x; y)�(y; z) = �(x; z)

for arbitrary points x; y and z. As in (5), and all through this paper, the index k will be used to

refer to both the kth body as well as to the kth body reference frame Fk with the speci�c usage

being evident from the context. Thus for instance, V (k) and �(k; tk) are the same as V (Fk), and

�(Fk; tk) respectively.

The spatial velocity V (O+
k ) of frame O

+
k (on the inboard side of the kth hinge) is related to

Vs(tk+1) via

V (O+
k ) = ��(tk+1;Ok)Vs(tk+1) (7)

Since the relative spatial velocity �V (k) across the k
th hinge is given by H�(k)�(k), the spatial

velocity V (Ok) of frame Ok on the outboard side of the kth hinge is

V (Ok) = V (O+
k ) +H�(k)�(k) (8)

The spatial velocity V (k) of the kth body reference frame is given by

V (k) = ��(Ok; k) [V (Ok)��u(dk)] = ��(Ok; k)
h
V (Ok)��d(k) _�(k)

i
(9)

Putting together (5), (7), (8) and (9), it follows that

V (k) = ��(k + 1; k)V (k + 1) + ��(tk+1; k)�
t(k + 1) _�(k + 1)

+��(Ok; k)
h
H�(k)�(k) ��d(k) _�(k)

i
(10)
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Recursive Propagation of Velocities

Thus with N (k)
4

= nm(k) + 6, and using (10), the modal spatial velocity Vm(k) 2 R
N (k) for the kth

body is given by

Vm(k)
4

=

 
_�(k)

V (k)

!
= ��(k + 1; k)Vm(k + 1) +H�(k)�(k) 2 RN (k) (11)

where the interbody transformation operator �(:; :) and themodal joint map matrix H(k) are de�ned

as

�(k + 1; k)
4

=

 
0 [�t(k + 1)]��(tk+1; k)

0 �(k + 1; k)

!
2 R

N (k+1)�N (k) (12)

H(k)
4

=

 
I �[�d

F
(k)]�

0 HF (k)

!
2 R

N (k)�N (k) (13)

where

HF (k)
4

= H(k)�(Ok ; k) 2 R
nr (k)�6; and �d

F
(k)

4

= ��(Ok; k)�
d(k) 2 R6�N (k)

Note that

�(k + 1; k) = A(k + 1)B(k + 1; k) (14)

where

A(k)
4

=

 
[�t(k)]�

�(k; tk)

!
2 R

N (k)�6 and B(k + 1; k)
4

= [0; �(tk+1; k)] 2 R
6�N (k) (15)

Also, the modal joint map matrix H(k) can be partitioned as

H(k) =

 
Hf (k)

Hr(k)

!
2 R

N (k)�N (k) (16)

where

Hf (k)
4

=
h
I; �[�d

F
(k)]�

i
2 R

nm (k)�N (k) and Hr(k)
4

= [0; HF (k)] 2 R
nr (k)�N (k)

(17)

With N =
PN

k=1N (k), we de�ne the spatial operator E� as

E�
4

=

0
BBBBBBBB@

0 0 0 0 0

�(2; 1) 0 : : : 0 0

0 �(3; 2) : : : 0 0
...

...
. . .

...
...

0 0 : : : �(N;N � 1) 0

1
CCCCCCCCA
2 R

N�N (18)
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Modal Mass Matrix for a Single Body

Using the fact that E� is nilpotent (i.e. EN� = 0), we de�ne the spatial operator � as

�
4

= [I � E�]
�1 = I + E� + � � �+ EN�1� =

0
BBBBB@

I 0 : : : 0

�(2; 1) I : : : 0
...

...
. . .

...

�(N; 1) �(N; 2) : : : I

1
CCCCCA 2 R

N�N

(19)

where

�(i; j)
4

= �(i; i� 1) � � � �(j + 1; j) for i > j

Also de�ne the spatial operator H
4

= diag
n
H(k)

o
2 R

N�N . Using these spatial operators, and

de�ning Vm
4

= col
n
Vm(k)

o
2 RN , from (11) it follows that the spatial operator expression for Vm

is given by

Vm = ��H�� (20)

3.2 Modal Mass Matrix for a Single Body

With Vs(jk) 2 R
6 denoting the spatial velocity of node jk, and Vs(k)

4

= col
n
Vs(jk)

o
2 R6ns (k) the

vector of all nodal spatial velocities for the kth body, it follows (see (5)) that

Vs(k) = B�(k)V (k) +�u(k) = [�(k); B�(k)]Vm(k) (21)

where

B(k)
4

= [�(k; 1k); �(k; 2k); � � � ; �(k; ns(k))] 2 R
6�6ns (k) (22)

Since Ms(k) is the structural mass matrix of the kth body, and usinf (21), the kinetic energy of the

kth body can be written in the form

1

2
V �

s (k)Ms(k)Vs(k) =
1

2
V �

m(k)Mm(k)Vm(k)

where

Mm(k)
4

=

 
��(k)

B(k)

!
Ms(k)[�(k); B�(k)] =

 
��(k)Ms(k)�(k) ��(k)Ms(k)B

�(k)

B(k)Ms(k)�(k) B(k)Ms(k)B
�(k)

!

=

 
Mff

m (k) Mfr
m (k)

M rf
m (k) M rr

m (k)

!
2 R

N (k)�N (k) (23)

Corresponding to the generalized speeds vector �(k), Mm(k) as de�ned above is the modal mass

matrix of the kth body. In the block partitioning in (23), the superscripts f and r denote the


exible and rigid blocks respectively. Thus Mff
m (k) represents the 
ex/
ex coupling block, while

Mfr
m (k) the 
ex/rigid coupling block of Mm(k). We will use this notational convention all through

11



Recursive Propagation of Accelerations

this paper. Note that M rr
m (k) is precisely the rigid body spatial inertia of the kth body. Indeed,

Mm(k) reduces to the rigid body spatial inertia when the body 
exibility is ignored, i.e., no modes

are used, since in this case nm(k) = 0 (and �(k) is null).

Since the vector l(k; jk) from Fk to node jk depends on the deformation of the node, the

operator B(k) is also deformation dependent. From (23) it follows that while the block Mff
m (k)

is deformation independent, both the blocks Mfr
m (k) and M rr

m (k) are deformation dependent. The

detailed expression for the modal mass matrix can be de�ned using modal integrals which are

computed as a part of the �nite{element structural analysis of the 
exible bodies. These expressions

for the modal integrals and the modal mass matrix of the kth body can be found in Ref. 12. Often

the deformation dependent parts of the modal mass matrix are ignored, and free-free eigen{modes

are used for the assumed modes �(k). When this is the case, Mfr
m (k) is zero andMff

m (k) is diagonal.

3.3 Recursive Propagation of Accelerations

Di�erentiating the velocity recursion equation, (11), we obtain the following recursive expression

for the modal spatial acceleration �m(k) 2 R
N (k) for the kth body:

�m(k)
4

= _Vm(k) =

 
��(k)

�(k)

!
= ��(k + 1; k)�m(k + 1) +H�(k) _�(k) + am(k) (24)

where �(k) = _V (k), and the Coriolis and centrifugal acceleration term am(k) 2 R
N (k) is given by

am(k) =
d��(k + 1; k)

dt
Vm(k + 1) +

dH�(k)

dt
�(k) (25)

The detailed expressions for am(k) can be found in Ref. 12. De�ning am = col
n
am(k)

o
2 RN and

�m = col
n
�m(k)

o
2 RN , and using spatial operators we can rexpress (24) in the form

�m = ��(H� _�+ am) (26)

The vector of spatial accelerations of all the nodes for the kth body, �s(k)
4

= col
n
�s(jk)

o
2 R6ns (k), is obtained by di�erentiating (21):

�s(k) = _Vs(k) = [�(k); B�(k)]�m(k) + a(k) (27)

where

a(k)
4

= col
n
a(jk)

o
=
d[�(k); B�(k)]

dt
Vm(k) 2 R

6ns (k) (28)

3.4 Recursive Propagation of Forces

Let f(k� 1) 2 R6 denote the e�ective spatial force of interaction, referred to frame Fk�1, between

the kth and (k � 1)th bodies across the (k � 1)th hinge. Recall that the (k � 1)th hinge is between

12



Recursive Propagation of Forces

node tk on the kth body and node dk�1 on the (k � 1)th body. With fs(jk) 2 R
6 denoting the

spatial force at a node jk, the force balance equation for node tk is given by

fs(tk) = �(tk; k � 1)f(k � 1) +Ms(tk)�s(tk) + b(tk) + fK(tk) (29)

For all nodes other than node tk on the kth body, the force balance equation is of the form

fs(jk) =Ms(jk)�s(jk) + b(jk) + fK(jk) (30)

In (29) and (30), fK(jk) are the componebts of the vector fK(k) = Ks(k)u(k) 2 R
6ns (k) denotes

the vector of spatial elastic strain forces for the nodes on the kth body, while b(jk) 2 R
6 denotes

the spatial gyroscopic force for node jk and is given by

b(jk) =

 
~!(jk)J (jk)!(jk)

m(jk)~!(jk)~!(jk)p(jk)

!
2 R

6 (31)

where !(jk) 2 R
3 denotes the angular velocity of node jk. Collecting together the above equations

and de�ning

C(k; k � 1)
4

=

0
BBBBBBBBB@

0
...

�(tk; k � 1)
...

0

1
CCCCCCCCCA
2 R

6ns (k)�6 and b(k)
4

= col
n
b(jk)

o
2 R

6ns (k) (32)

it follows from (29) and (30) that

fs(k) = C(k; k � 1)f(k � 1) +Ms(k)�s(k) + b(k) +Ks(k)u(k) (33)

where fs(k)
4

= col
n
fs(jk)

o
2 R6ns (k). Noting that

f(k) = B(k)fs(k) (34)

and using the principle of virtual work, it follows from (21) that the modal spatial forces fm(k) 2

R
N (k) for the kth body are given by

fm(k)
4

=

 
��(k)

B(k)

!
fs(k) =

 
��(k)fs(k)

f(k)

!
(35)

Premultiplying (33) by

 
��(k)

B(k)

!
and using (23), (27), and (35) leads to the following recursive

relationship for the modal spatial forces:

fm(k) =

 
��(k)C(k; k � 1)

B(k)C(k; k � 1)

!
f(k � 1) +Mm(k)�m(k) + bm(k) +Km(k)#(k)

=

 
[�t(k)]�

�(k; tk)

!
�(tk; k � 1)f(k � 1) +Mm(k)�m(k) + bm(k) +Km(k)#(k)

= �(k; k � 1)fm(k � 1) +Mm(k)�m(k) + bm(k) +Km(k)#(k) (36)

13



Operator Expression for the System Mass Matrix

Here we have de�ned

bm(k)
4

=

 
��(k)

B(k)

!
[b(k) +Ms(k)a(k)] 2 R

N (k) (37)

and the modal sti�ness matrix

Km(k)
4

=

 
��(k)Ks(k)�(k) 0

0 0

!
2 R

N (k)�N (k) (38)

The expression forKm(k) in (38) uses the fact that the columns of B
�(k) are indeed the deformation

dependent rigid body modes for the kth body and hence they do not contribute to its elastic strain

energy. Indeed, when a deformation dependent structural sti�ness matrix Ks(k) is used, we have

that

Ks(k)B
�(k) = 0 (39)

However the common practice (also followed here) of using a constant, deformation{independent

structural sti�ness matrix leads to the anomalous situation wherein (39) does not hold exactly. We

ignore these �ctitious extra terms on the left{hand side of (39).

The velocity{dependent bias term bm(k) is formed using modal integrals generated by stan-

dard �nite{element programs, and a detailed expression for it is given in Ref. 12. From (36), the

operator expression for the modal spatial forces fm
4

= col
n
fm(k)

o
2 R

N for all the bodies in the

chain is given by

fm = �(Mm�m + bm +Km#) (40)

where

Mm
4

= diag
n
Mm(k)

o
2 R

N�N ; Km
4

= diag
n
Km(k)

o
2 R

N�N ; and bm
4

= col
n
bm(k)

o
2 R

N

From the principle of virtual work, the generalized forces vector T 2 RN for the multibody system

is given by the expression

T = Hfm (41)

3.5 Operator Expression for the System Mass Matrix

Collecting together the operator expressions in (20), (26), (40) and (41) we have:

Vm = ��H��

�m = ��(H� _�+ am) (42)

fm = �(Mm�m + bm +Km#) = �Mm�
�
H
� _�+�(Mm�

�am + bm +Km#)

T = Hfm = H�Mm�
�
H
� _�+H�(Mm�

�am + bm)

= M _�+ C

14



where

M
4

= H�Mm�
�
H
�
2 R

N�N and C
4

= H�(Mm�
�am + bm +Km#) 2 R

N (43)

Here M is the system mass matrix for the serial chain and the expression H�Mm�
�H� is referred

to as the Newton-Euler Operator Factorization of the mass matrix. C is the vector of Coriolis,

centrifugal, and elastic forces for the system.

It is noteworthy that the operator expressions for M and C are identical in form to those

for rigid multibody systems (see Refs. 3, 13). Indeed, the similarity is more than super�cial, and

the key properties of the spatial operators that are used in the analysis and algorithm development

for rigid multibody systems also hold for the spatial operators de�ned here. As a consequence, a

large part of the analysis and algorithms for rigid multibody systems can be easily carried over and

applied to 
exible multibody systems. This is the approach adopted here.

4 Inverse Dynamics Algorithm

This section describes a recursive Newton-Euler inverse dynamics algorithm for computing the

generalized forces T , for a given set of generalized accelerations _� and system state f#; �g. The

inverse dynamics algorithm also forms a part of forward dynamics algorithms such as those based

upon composite body inertias or the conjugate gradient method ( Ref. 14).

Collecting together the recursive equations in (11), (24), (36) and (41) we obtain the fol-

lowing recursive Newton{Euler inverse dynamics algorithm:8>>>>>>><
>>>>>>>:

Vm(N + 1) = 0; �m(N + 1) = 0

for k = N � � � 1

Vm(k) = ��(k + 1; k)Vm(k + 1) +H�(k)�(k)

�m(k) = ��(k + 1; k)�m(k + 1) +H�(k) _�(k) + am(k)

end loop

(44)

8>>>>>>><
>>>>>>>:

fm(0) = 0

for k = 1 � � �N

fm(k) = �(k; k � 1)fm(k � 1) +Mm(k)�m(k) + bm(k) +Km(k)#(k)

T (k) = H(k)fm(k)

end loop

The structure of this algorithm closely resembles the recursive Newton-Euler inverse dynamics

algorithm for rigid multibody systems (see Refs. 15, 3). All external forces on the kth body are

handled by absorbing them into the gyroscopic force term bm(k). Base mobility is handled by

attaching an additional 6 degree of freedom hinge between the mobile base and an inertial frame.

By taking advantage of the special structure of �(k + 1; k) and H(k) in (12) and (13),

the Newton{Euler recursions in (44) can be further simpli�ed. Using block partitioning and the
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superscripts f and r as before to denote the 
exible and rigid components, we have that

Vm(k) =

 
V f
m(k)

V r
m(k)

!
; �m(k) =

 
�fm(k)

�rm(k)

!
; fm(k) =

 
ffm(k)

f rm(k)

!
; and T (k) =

 
T f (k)

T r(k)

!

It is easy to verify that (45) below is simpli�ed version of the inverse dynamics algorithm in (44).

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Vm(N + 1) = 0; �m(N + 1) = 0

for k = N � � � 1

V f
m(k) = _�(k)

V r
m(k) = ��(tk+1; k)A

�(k + 1)Vm(k + 1) +H�

F
(k)�(k) ��d

F
(k) _�(k)

�fm(k) = ��(k)

�rm(k) = ��(tk+1; k)A
�(k + 1)�m(k + 1) +H�

F
(k) _�(k)��d

F
(k)��(k) + arm(k)

end loop

(45)8>>>>>>>>>><
>>>>>>>>>>:

fm(0) = 0

for k = 1 � � �N

fm(k) = A(k)�(tk; k � 1)f rm(k � 1) +Mm(k)�m(k) + bm(k) +Km(k)#(k)

T (k) =

 
T f (k)

T r(k)

!
=

 
ffm(k)� [�d

F
(k)]�f rm(k)

HF (k)f
r
m(k)

!

end loop

Flexible multibody systems have actuators typically only at the hinges. Thus for the kth body,

only the subset of the generalized forces vector T (k) corresponding to the hinge actuator forces

T r(k) can be set, while the remaining generalized forces T f (k) are zero. Thus in contrast with rigid

multibody systems, 
exible multibody systems are under-actuated systems ( Ref. 16), since the

number of available actuators is less than the number of motion degrees of freedom in the system.

For such under-actuated systems, the inverse dynamics computations for the generalized force T

are meaningful only when the prescribed generalized accelerations _� form a consistent data set.

For a consistent set of generalized accelerations, the inverse dynamics computations will lead to a

generalized force vector T such that T f (:) = 0.

5 Composite Body Forward Dynamics Algorithm

The forward dynamics problem for a multibody system requires computing the generalized accel-

erations _� for a given vector of generalized forces T and state of the system f#; �g. The composite

body forward dynamics algorithm described below consists of the following steps: (a) computing the

system mass matrixM, (b) computing the bias vector C, and (c) numerically solving the following

linear matrix equation for _�:

M _� = T � C (46)
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Later in Section 6 we describe the recursive articulated body forward dynamics algorithm that does

not require the explicit computation of either M or C

It is evident from (46) that the components of the vector C are the generalized forces for

the system when the generalized accelerations _� are all zero. Thus C can be computed using the

inverse dynamics algorithm in (45). We describe next an e�cient composite{body{based recursive

algorithm for the computation of the mass matrix M. This algorithm is based upon the follow-

ing lemma which contains a decomposition of the mass matrix into block diagonal, block upper

triangular and block lower triangular components.

Lemma 5.1 De�ne the composite body inertias R(k) 2 RN (k)�N (k) recursively for all the bodies in

the serial chain as follows:8>>>>><
>>>>>:

R(0) = 0

for k = 1 � � �N

R(k) = �(k; k � 1)R(k � 1)��(k; k � 1) +Mm(k)

end loop

(47)

Also de�ne R
4

= diag
n
R(k)

o
2 RN�N . Then we have the following spatial operator decomposition

�Mm�
� = R+ ~�R+R~�� (48)

where ~�
4

= �� I.

Proof: See Appendix A.

Physically, R(k) is the modal mass matrix of the composite body formed from all the bodies

outboard of the kth hinge by freezing all their (deformation plus hinge) degrees of freedom. It follows

from (43) and Lemma 5.1 that

M = H�Mm�
�
H
� = HRH� +H~�RH� +HR~��H� (49)

Note that the three terms on the right of (49) are block diagonal, block lower triangular and block

upper triangular respectively. The following algorithm for computing the mass matrixM computes

17



the elements of these terms recursively:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

R(0) = 0

for k = 1 � � �N

R(k) = �(k; k � 1)R(k � 1)��(k; k � 1) +Mm(k)

= A(k)�(tk; k � 1)Rrr(k � 1)��(tk; k � 1)A�(k) +Mm(k)

X(k) = R(k)H�(k)

M(k; k) = H(k)X(k)8>>>>>>><
>>>>>>>:

for j = (k+ 1) � � �N

X(j) = �(j; j � 1)X(j � 1) = A(j)�(tj ; j � 1)Xr(j � 1)

M(j; k) = M�(k; j) = H(j)X(j)

end loop

end loop

(50)

The main recursion proceeds from tip to base, and computes the blocks along the diagonal of M.

As each such diagonal element is computed, a new recursion to compute the o�{diagonal elements

is spawned. The structure of this algorithm closely resembles the composite rigid body algorithm

for computing the mass matrix of rigid multibody systems ( Refs. 14, 10). Like the latter, it is also

highly e�cient. Additional computational simpli�cations of the algorithm arising from the sparsity

of both Hf (k) and Hr(k) are easy to incorporate.

6 Factorization and Inversion of the Mass Matrix

An operator factorization of the system mass matrix M, denoted the Innovations Operator Fac-

torization, is derived in this section. This factorization is an alternative to the Newton{Euler

factorization in (43) and, in contrast with the latter, the factors in the Innovations factorization

are square and invertible. Operator expressions for the inverse of these factors are developed and

these immediately lead to an operator expression for the inverse of the mass matrix. The oper-

ator factorization and inversion results here closely resemble the corresponding results for rigid

multibody systems (see Ref. 3).

Given below is a recursive algorithm which de�nes some required articulated body quanti-
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ties: 8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

P+(0) = 0

for k = 1 � � �N

P (k) = �(k; k � 1)P+(k � 1)��(k; k � 1) +Mm(k) 2 R
N (k)�N (k)

D(k) = H(k)P (k)H�(k) 2 RN (k)�N (k)

G(k) = P (k)H�(k)D�1(k) 2 RN (k)�N (k)

K(k + 1; k) = �(k + 1; k)G(k) 2 RN (k)�N (k)

�(k) = I �G(k)H(k) 2 RN (k)�N (k)

P+(k) = �(k)P (k) 2 RN (k)�N (k)

	(k + 1; k) = �(k + 1; k)� (k) 2 RN (k)�N (k)

end loop

(51)

The operator P 2 R
N�N is de�ned as a block diagonal matrix with the kth diagonal element

being P (k). The quantities de�ned in (51) form the component elements of the following spatial

operators:

D
4

= HPH� = diag
n
D(k)

o
2 R

N�N

G
4

= PH�D�1 = diag
n
G(k)

o
2 R

N�N

K
4

= E�G 2 R
N�N

�
4

= I �GH = diag
n
�(k)

o
2 R

N�N

E	
4

= E�� 2 R
N�N (52)

The only nonzero block elements of K and E	 are the elements' K(k + 1; k)'s and 	(k + 1; k)'s

respectively along the �rst sub-diagonal.

As in the case for E�, E	 is nilpotent, so we can de�ne the operator 	 as follows:

	
4

= (I � E	)
�1 =

0
BBBBB@

I 0 : : : 0

	(2; 1) I : : : 0
...

...
. . .

...

	(N; 1) 	(N; 2) : : : I

1
CCCCCA 2 R

N�N (53)

where

	(i; j)
4

= 	(i; i� 1) � � � 	(j + 1; j) for i > j

The structure of the operators E	 and 	 is identical to that of the operators E� and � respectively

except that the component elements are now 	(i; j) rather than �(i; j). Also, the elements of

	 have the same semigroup properties as the elements of the operator �, and as a consequence,

high-level operator expressions involving them can be directly mapped into recursive algorithms,

and the explicit computation of the elements of the operator 	 is not required.

The Innovations Operator Factorization of the mass matrix is de�ned in the following lemma.
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Lemma 6.1

M = [I +H�K]D[I +H�K]� (54)

Proof: See Appendix A.

Note that the factor [I +H�K] 2 RN�N is square, block lower triangular and nonsingular,

while D is a block diagonal matrix. This factorization provides a closed{form expression for the

block LDL� decomposition of M. The following lemma gives the closed form operator expression

for the inverse of the factor [I +H�K].

Lemma 6.2

[I +H�K]�1 = [I �H	K] (55)

Proof: See Appendix A.

It follows from Lemmas 6.1 and 6.2 that the operator expression for the inverse of the mass matrix

is given by:

Lemma 6.3

M
�1 = [I �H	K]�D�1[I �H	K] (56)

Once again, note that the factor [I �H	K] is square, block lower triangular and nonsingular and

so Lemma 6.3 provides a closed{form expression for the block LDL� decomposition of M�1.

7 Articulated Body Forward Dynamics Algorithm

We �rst use the operator expression for the mass matrix inverse developed in Section 6 to obtain an

operator expression for the generalized accelerations _� This expression directly leads to a recursive

algorithm for the forward dynamics of the system. The structure of this algorithm is completely

identical in form to the articulated body algorithm for serial rigid multibody systems. The com-

putational cost of this algorithm is further reduced by separately processing the 
exible and hinge

degrees of freedom at each step in the recursion, and this leads to the articulated body forward

dynamics algorithm for serial 
exible multibody systems. This algorithm is an alternative to the

composite{body forward dynamics algorithm developed earlier.

The following lemma describes the operator expression for the generalized accelerations _�

in terms of the generalized forces T .
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Simpli�ed Algorithm for the Articulated Body Quantities

Lemma 7.1

_� = [I �H	K]�D�1
h
T �H	fKT + Pam + bm +Km#g

i
�K�	�am (57)

Proof: See Appendix A.

As in the case of rigid multibody systems ( Refs. 3, 4), the direct recursive implementation

of (57) leads to the following recursive forward dynamics algorithm:8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

z+(0) = 0

for k = 1 � � �N

z(k) = �(k; k � 1)z+(k � 1) + P (k)am(k) + bm(k) +Km(k)#(k)

�(k) = T (k)�H(k)z(k)

�(k) = D�1(k)�(k)

z+(k) = z(k) +G(k)�(k)

end loop

(58)8>>>>>>>>>><
>>>>>>>>>>:

�m(N + 1) = 0

for k = N � � � 1

�+m(k) = ��(k + 1; k)�m(k + 1)

_�(k) = �(k)�G�(k)�+m(k)

�m(k) = �+m(k) +H
�(k) _�(k) + am(k)

end loop

The structure of this algorithm is closely related to the structure of the well known Kalman �ltering

and smoothing algorithms ( Ref. 10). All the degrees of freedom for each body (as characterized by

its joint map matrixH�(:)) are processed together at each recursion step in this algorithm. However,

by taking advantage of the sparsity and special structure of the joint map matrix, additional

reduction in computational cost is obtained by processing the 
exible degrees of freedom and the

hinge degrees of freedom separately. These simpli�cations are described in the following sections.

7.1 Simpli�ed Algorithm for the Articulated Body Quantities

Instead of a detailed derivation, we describe here the conceptual basis for the separation of the

modal and hinge degrees of freedom for each body. First we recall the velocity recursion equation

in (11)

Vm(k) = ��(k + 1; k)Vm(k + 1) +H�(k)�(k) (59)

and the partitioned form of H(k) in (13)

H(k) =

 
Hf (k)

Hr(k)

!
(60)
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Simpli�ed Algorithm for the Articulated Body Quantities

Introducing a dummy variable k0, we can rewrite (59) as

Vm(k
0) = ��(k + 1; k0)Vm(k + 1) +H�

f (k) _�(k)

Vm(k) = ��(k0; k)Vm(k
0) +H�

r(k)�(k) (61)

where

�(k + 1; k0)
4

= �(k + 1; k) and �(k0; k)
4

= I

Conceptually, each 
exible body is now associated with two new bodies. The �rst one has the same

kinematical and mass/inertia properties as the real body and has the 
exible degrees of freedom.

The second body is a �ctitious body and is massless and has zero extent. It is associated with the

hinge degrees of freedom. The serial chain now contains twice the number of bodies as the original

one, with half the new bodies being �ctitious ones. The new H� operator now has the same number

of columns but twice the number of rows as the originalH� operator. The new � operator has twice

as many rows and columns as the original one. Repeating the analysis described in the previous

sections, we once again obtain the same operator expression as (57). This expression also leads

to a recursive forward dynamics algorithm as in (58). However each sweep in the algorithm now

contains twice as many steps as the original algorithm. But since each step now processes only

a smaller number of degrees of freedom, this leads to a reduction in the overall cost. The new

algorithm (replacing (51)) for computing the articulated body quantities is as follows:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

P+(0) = 0

for k = 1 � � �N

�(k) = B(k; k � 1)P+(k � 1)B�(k; k � 1) 2 R6�6

P (k) = A(k)�(k)A�(k) +Mm(k) 2 R
N (k)�N (k)

Df (k) = Hf (k)P (k)H
�

f (k) 2 R
nm (k)�nm(k)

Gf (k) = P (k)H�

f (k)D
�1
f (k) 2 RN (k)�nm(k)

�f (k) = I �Gf(k)Hf (k) 2 R
N (k)�N (k)

Pr(k) = �f (k)P (k) 2 R
N (k)�N (k)

Dr(k) = Hr(k)Pr(k)H
�

r(k) 2 R
nr (k)�nr(k)

Gr(k) = Pr(k)H
�

r(k)D
�1
r (k) 2 RN (k)�nr(k)

� r(k) = I �Gr(k)Hr(k) 2 R
N (k)�N (k)

P+(k) = � r(k)Pr(k) 2 R
N (k)�N (k)

	(k + 1; k) = �(k + 1; k)� (k) 2 RN (k)�N (k)

end loop

(62)

We now use the sparsity of B(k + 1; k), Hf (k) and Hr(k) to further simplify the above algorithm.

Using the symbol \�" to indicate \don't care" blocks, the structure in block partitioned form of
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Simpli�ed Articulated Body Forward Dynamics Algorithm

some of the quantities in (62) is given below:

�(k) = �(tk; k � 1)P+
R (k � 1)��(tk; k � 1); (P+

R (k) is de�ned below)

Gf (k) =

 
�

g(k)

!
; where g(k) = �(k)D�1

f (k) 2 R6�nm (k);

and �(k)
4

= [P rf (k); P rr(k)]H�

f (k) 2 R
6�nm (k)

Pr(k) =

 
� �

� PR(k)

!
; where PR(k) = P rr(k)� g(k)��(k) 2 R6�6

Dr(k) = HF (k)PR(k)H
�

F
(k) 2 Rnr (k)�nr(k)

Gr(k) =

 
�

GR(k)

!
; where GR(k)

4

= PR(k)H
�

F
(k)D�1

r (k) 2 R6�nr (k)

� r(k) =

 
I �

0 �R(k)

!
; where �R(k) = I �GR(k)HF (k) 2 R

6�6

P+(k) =

 
� �

� P+
R (k)

!
; where P+

R (k) = �R(k)PR(k) 2 R
6�6

Using the structure described above, the simpli�ed algorithm for computing the articulated body

quantities is as follows: 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

P+
R (0) = 0

for k = 1 � � �N

�(k) = �(tk; k � 1)P+
R (k � 1)��(tk; k � 1)

P (k) = A(k)�(k)A�(k) +Mm(k)

Df (k) = Hf (k)P (k)H
�

f (k)

�(k) = [P rf (k); P rr(k)]H�

f (k)

g(k) = �(k)D�1
f (k)

PR(k) = P rr(k)� g(k)��(k)

DR(k) = HF (k)PR(k)H
�

F
(k)

GR(k) = PR(k)H
�

F
(k)D�1

R (k)

�R(k) = I �GR(k)HF (k)

P+
R (k) = �R(k)PR(k)

end loop

(63)

7.2 Simpli�ed Articulated Body Forward Dynamics Algorithm

The complete recursive articulated body forward dynamics algorithm for a serial 
exible multibody

system follows directly from the recursive implementation of the expression in (57). The algorithm
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Simpli�ed Articulated Body Forward Dynamics Algorithm

consists of the following steps: (a) a base{to{tip recursion as in (45) for computing the modal

spatial velocities Vm(k) and the Coriolis and gyroscopic terms am(k) and bm(k) for all the bodies;

(b) computation of the articulated body quantities using (78) and (63); and (c) a tip-to-base

recursion followed by a base-to-tip recursion for the joint accelerations _� as described below:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

z+R(0) = 0

for k = 1 � � �N

z(k) =

 
zf (k)

zr(k)

!

= A(k)�(tk; k � 1)z+R (k � 1) + bm(k) +Km(k)#(k) 2 R
N (k)

�f (k) = Tf (k)� zf (k) + [�d
F
(k)]�zr(k) 2 R

nm (k)

�f (k) = D�1
f (k)�f (k) 2 R

nm (k)

zR(k) = zr(k) + g(k)�f (k) + PR(k)amR(k) 2 R
6

�R(k) = TR(k)�HF (k)zR(k) 2 R
nr (k)

�R(k) = D�1
R (k)�R(k) 2 R

nr (k)

z+R(k) = zR(k) +GR(k)�R(k) 2 R
6

end loop

(64)

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�m(N + 1) = 0

for k = N � � � 1

�+R(k) = ��(tk+1; k)A
�(k + 1)�m(k + 1) 2 R6

_�(k) = �R(k) �G�

R(k)�
+
R(k) 2 R

nr (k)

�R(k) = �+R(k) +H�

F
(k) _�(k) + amR(k) 2 R

6

��(k) = �f (k)� g�(k)�R(k) 2 R
nm (k)

�m(k) =

 
��(k)

�R(k)��d
F
(k)��(k)

!
2 RN (k)

end loop

The recursion in (64) is obtained by simplifying the recursions in (58) in the same manner as

described in the previous section for the articulated body quantities.

In contrast with the composite body forward dynamics algorithm described inSection 5, the

articulated body forward dynamics algorithm does not require the explicit computation of either

M or C The structure of this articulated body algorithm closely resembles the recursive articulated

body forward dynamics algorithm for rigid multibody systems described in references ( Refs. 17, 3).

The articulated body forward dynamics algorithm has been used to develop a dynamics

simulation software package (called DARTS) for the high{speed, real{time, hardware{in{the{loop

simulation of planetary spacecraft. Validation of the DARTS software was carried out by comparing

simulation results with those from a standard 
exible multibody simulation package ( Ref. 8). The

results from the two independent simulations have shown complete agreement.
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8 Computational Cost

This section discusses the computational cost of the composite body and the articulated body

forward dynamics algorithms. For low{spin multibody systems, it has been suggested in Ref. 18

that using ruthlessly linearized models for each 
exible body can lead to signi�cant computational

reduction without sacri�cing �delity. These linearized models are considerably less complex and do

not require much of the modal integral data for the individual 
exible bodies. All computational

costs given below are based on the use of ruthlessly linearized models and the computationally

simpli�ed steps described in Appendix B.

Flexible multibody systems typically involve both rigid and 
exible bodies and, in addition,

di�erent sets of modes are used to model the 
exibility of each body. As a consequence, where

possible, we describe the contribution of a typical (non{extremal) 
exible body, denoted the kth

body, to the overall computational cost. Note that the computational cost for extremal bodies as

well as for rigid bodies is lower than that for a non{extremal 
exible body. Summing up this cost

for all the bodies in the system gives a �gure close to the true computational cost for the algorithm.

Without any loss in generality, we have assumed here that all the hinges are single degree of freedom

rotary joints and that free-free assumed modes are being used. The computational costs are given

in the form of polynomial expressions for the number of 
oating point operations with the symbol

M denoting multiplications and A denoting additions.

8.1 Computational Cost of the Composite Body Forward Dynamics Algorithm

The composite body forward dynamics algorithm described in Section 5 is based on solving the

linear matrix equation

M _� = T � C

The computational cost of this forward dynamics algorithm is given below:

1. Cost of computing R(k) for the kth body using the algorithm in (50) is

[48nm(k) + 90]M + [n2m(k) +
97
2
nm(k) + 116]A

2. Contribution of the kth body to the cost of computing M (excluding cost of R(k)'s) using

the algorithm in (50) is�
k
�
12n2m(k) + 34nm(k) + 13

�	
M+

�
k
�
11n2m(k) + 24nm(k) + 13

�	
A.

3. Setting the generalized accelerations _� = 0, the vector C can be obtained by using the inverse

dynamics algorithm described in (45) for computing the generalized forces T . The contribu-

tion of the kth body to the computational cost for C(k) is
�
2n2m(k) + 54nm(k) + 206

	
M +�

2n2m(k) + 50nm(k) + 143
	
A.

4. The cost of computing T � C is fNgA.

5. The cost of solving the linear equation in (46) for the accelerations _� isn
1
6N

3 + 3
2N

2 �
2
3N

o
M+

n
1
6N

3 +N 2 �
7
6N

o
A.
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Computational Cost of the Articulated Body Forward Dynamics Algorithm

The overall complexity of the composite body forward dynamics algorithm is O(N 3).

8.2 Computational Cost of the Articulated Body Forward Dynamics Algorithm

The articulated body forward dynamics algorithm is based on the recursions described in (78), (63)

and (64). Since the computations in (78) can be carried out prior to the dynamics simulation, the

cost of this recursion is not included in the cost of the overall forward dynamics algorithm described

below:

1. The algorithm for the computation of the articulated body quantities is given in (63). The

step involving the computation of D�1
f (k) can be carried out either by an explicit inversion

of Df (k) with O(n3m(k)) cost, or by the indirect procedure described in (77) with O(n2m(k))

cost. The �rst method is more e�cient than the second one for nm(k) � 7.

� Cost of (63) for the kth body based on the explicit inversion of Df (k) (used when

nm(k) � 7) isn
5
6
n3m(k) +

25
2
n2m(k) +

764
3
nm(k) + 180

o
M+

n
5
6
n3m(k) +

21
2
n2m(k) +

548
3
nm(k) + 164

o
A.

� Cost of (63) for the kth body based on the indirect computation of D�1
f (k) (used when

nm(k) � 8) is
�
12n2m(k) + 255nm(k) + 572

	
M+

�
13n2m(k) + 182nm(k) + 445

	
A.

2. The cost for the tip-to-base recursion sweep in (64) for the kth body is�
n2m(k) + 25nm(k) + 49

	
M+

�
n2m(k) + 24nm(k) + 50

	
A.

3. The cost for the base-to-tip recursion sweep in (64) for the kth body is f18nm(k) + 52gM+

f19nm(k) + 42gA.

The overall complexity of this algorithm is O(Nn2m), where nm is an upper bound on the number

of modes per body in the system.

From a comparison of the computational costs, it is clear that the articulated body algo-

rithm is more e�cient than the composite body algorithm as the number modes and bodies in the

multibody system increases. Figure 2 contains a plot of the computational cost (in 
oating point

operations) of the composite body and the articulated body forward dynamics algorithms versus

the number of assumed{modes per body for a serial chain with ten 
exible bodies. The articulated

body algorithm is faster by over a factor of 3 for 5 modes per body, and by over a factor of 7 for

the case of 10 modes per body. The divergence between the costs for the two algorithms becomes

even more rapid as the number of bodies is increased.

9 Extensions to General Topology Flexible Multibody Systems

For rigid multibody systems, Ref. 13 describes the extensions to the dynamics formulation and

algorithms that are required as the topology of the system goes from a serial chain topology, to a tree

topology and �nally to a closed-chain topology system. The key to this progression is the invariance
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of the operator description of the system dynamics to increases in the topological complexity of

the system. Indeed, as seen here, the operator description of the dynamics remains the same even

when the multibody system contains 
exible rather than rigid component bodies. Thus, using the

approach in Ref. 13 for rigid multibody systems, the dynamics formulation and algorithms for


exible multibody systems with serial topology can be extended in a straightforward manner to

systems with tree or closed-chain topology. Based on these observations, extending the serial chain

dynamics algorithms described in this paper to tree topology 
exible multibody systems requires

the following steps:

1. For each outward sweep involving a base to tip(s) recursion, at each body, the outward

recursion must be continued along each outgoing branch emanating from the current body.

2. For each inward sweep involving a tip(s) to base recursion, at each body, the recursion must

be continued inwards only after summing up contributions from each of the other incoming

branches for the body.

A closed-chain topology 
exible multibody system can be regarded as a tree topology system

with additional closure constraints. As described in Ref. 13, the dynamics algorithm for closed-

chain systems consists of recursions involving the dynamics of the tree topology system, and in

addition the computation of the closure constraint forces. The computation of the constraint forces

requires the e�ective inertia of the tree topology system re
ected to the points of closure. The

algorithm for closed{chain 
exible multibody systems for computing these inertias is identical in

form to the recursive algorithm described in Ref. 13.

10 Conclusions

This paper uses spatial operator methods to develop a new dynamics formulation for 
exible multi-

body systems. A key feature of the formulation is that the operator description of the 
exible

system dynamics is identical in form to the corresponding operator description of the dynamics

of rigid multibody systems. A signi�cant advantage of this unifying approach is that it allows

ideas and techniques for rigid multibody systems to be easily applied to 
exible multibody sys-

tems. The Newton{Euler Operator Factorization of the mass matrix forms the basis for recursive

algorithms such as those for the inverse dynamics, the computation of the mass matrix, and the

composite body forward dynamics algorithm for the 
exible multibody system. Subsequently, we

develop the articulated body forward dynamics algorithm, which, in contrast to the composite

body forward dynamics algorithm, does not require the explicit computation of the mass matrix.

While the computational cost of the algorithms depends on factors such as the topology and the

amount of 
exibility in the multibody system, in general, the articulated body forward dynamics

algorithm is by far the more e�cient algorithm for 
exible multibody systems containing even a

small number of 
exible bodies. All of the algorithms are closely related to those encountered in

the domain of Kalman �ltering and smoothing. While the major focus in this paper is on 
exible

multibody systems with serial chain topology, the extensions to tree and closed chain topologies

are straightforward and are described as well.
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Appendix A: Proofs of the Lemmas

At the operator level, the proofs of the lemmas in this publication are completely analogous to

those for rigid multibody systems ( Refs. 3, 4).

Proof of Lemma 5.1: Using operators, we can rewrite (47) in the form

Mm = R� E�RE
�

� (65)

From (19) it follows that �E� = E�� = �� I = ~�. Multiplying (65) from the left and right by �

and �� respectively leads to

�Mm�
� = �R�� � �E�RE

�

��
� = (~� + I)R(~� + I)� � ~�R~�� = R+ ~�R+R~��

Proof of Lemma 6.1: It is easy to verify that �P�� = �P . As a consequence, the recursion for

P (:) in (51) can be rewritten in the form

Mm = P � E	PE
�

	 = P � E	PE
�

� = P � E�PE
�

� +KDK� (66)

Pre{ and post{multiplying (66) by � and �� respectively then leads to

�Mm�
� = P + ~�P + P ~�� +�KDK���
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Hence,

=) M = H�Mm�
�
H
� = H[P + ~�P + P ~�� +�KDK���]H�

= D +H�KD +DK���H� +H�KDK���H� = [I +H�K]D[I +H�K]�

Proof of Lemma 6.2: Using a standard matrix identity we have that

[I +H�K]�1 = I �H�[I +KH�]�1K (67)

Note that

	�1 = I � E	 = (I � E�) + E�GH = ��1 +KH (68)

from which it follows that

	�1� = I +KH�

Using this with (67) it follows that

[I +H�K]�1 = I �H�[	�1�]�1K = I �H	K

Proof of Lemma 7.1: From (42) and (43), the expression for the generalized accelerations _� is

given by

_� = M
�1(T � C) = [I �H	K]�D�1[I �H	K]

h
T �H�[Mm�

�am + bm +Km#]
i

(69)

From (68) we have that

[I �H	K]H� = H	[	�1
�KH]� = H	 (70)

Thus (69) can be written as

_� = [I �H	K]�D�1
h
T �H	[KT +Mm�

�am + bm +Km#]
i

(71)

From (66) it follows that

Mm = P � E	PE
�

� =) 	Mm�
� = 	P + P ~�� (72)

and so (71) simpli�es to

_� = [I �H	K]�D�1
h
T �H	[KT + Pam + bm +Km#]�HP ~��am

i
(73)

From (68) we have that

[I �H	K]�D�1
HP ~�� = [I �H	K]�K��� = K�	�[	��

�KH]��� = K�	� (74)

Using (74) in (73) leads to the result.
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Appendix B: Ruthless Linearization of Flexible Body Dynamics

It has been pointed out in recent literature ( Refs. 19, 18) that the use of modes for modeling body


exibility leads to \premature linearization" of the dynamics, in the sense that while the dynamics

model contains deformation dependent terms, the geometric sti�ening terms are missing. These

missing geometric sti�ening terms are the dominant terms among the �rst{order (deformation)

dependent terms. In general, it is necessary to take additional steps to recover the missing geometric

sti�ness terms to obtain a \consistently" linearized model with the proper degree of �delity.

However for systems with low spin rate, there is typically little loss in model �delity when

the deformation and deformation rate dependent terms are dropped altogether from the dynamical

equations of motion ( Ref. 18). Such models have been dubbed the ruthlessly linearized models.

These linearized models are considerably less complex, and do not require most of the modal

integrals data for each individual 
exible body. In this model, the approximations to Mm(k),

am(k), and bm(k) are as follows:

Mm(k) �M0
m(k); am(k) �

 
0

a0mR(k)

!
; and bm(k) � b0m(k) (75)

With this approximation, Mm(k) is constant in the body frame, while am(k) and bm(k) are inde-

pendent of �(k) and _�(k). With this being the case, the formation of D�1
f in (63) can be simpli�ed.

Using the matrix identity

[A+BCB�]�1 = A�1 �A�1B[C�1 +B�A�1B]�1B�A�1 (76)

which holds for general matrices A; B and C, it is easy to verify that

D�1
f (k) = �(k)��(k)[��1(k) + 
(k)]�1(k)��(k) (77)

where the matrices �(k), 
(k), and �(k) are precomputed just once prior to the dynamical simu-

lation as follows: 8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

for k = 1 � � �N

�(k) = [Hf (k)Mm(k)H
�

f (k)]
�1 2 RN�N

�(k) = Hf (k)A(k) 2 R
N�6

�(k) = �(k)�(k) 2 RN�6


(k) = ��(k)�(k) 2 R6�6

end loop

(78)

Using (77) reduces the computational cost for computing the articulated body inertias to a quadratic

rather than a cubic function of the number of modes.
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Figure Captions

1. Illustration of links and hinges in a 
exible serial multibody system

2. A comparison of the computational cost in 
oating point operations for the articulated body

and the composite body forward dynamics algorithms for a serial chain multibody systems

with 10 
exible bodies.
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